Bocavirus infection induces a DNA damage response that facilitates viral DNA replication and mediates cell death.

نویسندگان

  • Yong Luo
  • Aaron Yun Chen
  • Jianming Qiu
چکیده

Minute virus of canines (MVC) is an autonomous parvovirus that replicates efficiently without helper viruses in Walter Reed/3873D (WRD) canine cells. We previously showed that MVC infection induces mitochondrion-mediated apoptosis and G(2)/M-phase arrest in infected WRD cells. However, the mechanism responsible for these effects has not been established. Here, we report that MVC infection triggers a DNA damage response in infected cells, as evident from phosphorylation of H2AX and RPA32. We discovered that both ATM (ataxia telangiectasia-mutated kinase) and ATR (ATM- and Rad3-related kinase) were phosphorylated in MVC-infected WRD cells and confirmed that ATM activation was responsible for the phosphorylation of H2AX, whereas ATR activation was required for the phosphorylation of RPA32. Both pharmacological inhibition of ATM activation and knockdown of ATM in MVC-infected cells led to a significant reduction in cell death, a moderate correction of cell cycle arrest, and most importantly, a reduction in MVC DNA replication and progeny virus production. Parallel experiments with an ATR-targeted small interfering RNA (siRNA) had no effect. Moreover, we identified that this ATM-mediated cell death is p53 dependent. In addition, we localized the Mre11-Rad50-Nbs1 (MRN) complex, the major mediator as well as a substrate of the ATM-mediated DNA damage response pathway to MVC replication centers during infection, and show that Mre11 knockdown led to a reduction in MVC DNA replication. Our findings are the first to support the notion that an autonomous parvovirus is able to hijack the host DNA damage machinery for its own replication and for the induction of cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SMC1-mediated intra-S-phase arrest facilitates bocavirus DNA replication.

Activation of a host DNA damage response (DDR) is essential for DNA replication of minute virus of canines (MVC), a member of the genus Bocavirus of the Parvoviridae family; however, the mechanism by which DDR contributes to viral DNA replication is unknown. In the current study, we demonstrate that MVC infection triggers the intra-S-phase arrest to slow down host cellular DNA replication and t...

متن کامل

Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by t...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA...

متن کامل

Inhibition of the herpes simplex virus type 1 DNA polymerase induces hyperphosphorylation of replication protein A and its accumulation at S-phase-specific sites of DNA damage during infection.

The treatment of mammalian cells with genotoxic substances can trigger DNA damage responses that include the hyperphosphorylation of replication protein A (RPA), a protein that plays key roles in the recognition, signaling, and repair of damaged DNA. We have previously reported that in the presence of a viral polymerase inhibitor, herpes simplex virus type 1 (HSV-1) infection induces the hyperp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2011